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Abstract

Task parallelism research has traditionally focused on
optimizing computation-intensive applications. Due
to the proliferation of commodity parallel processors,
there has been recent interest in supporting interactive
applications. Such interactive applications frequently
rely on I/O operations that require few processing cycles
but may incur significant latency to complete. In order
to increase performance, when a particular thread of
control is blocked on an I/O operation, ideally we
would like to hide this latency by using the processing
resources to do other ready work instead of blocking or
spin waiting on this I/O. There has been limited prior
work on hiding this latency and only one result that
provides a theoretical bound for interactive applications
that use I/O operations.

In this work, we propose a task parallel platform
that supports I/O operations using the futures abstrac-
tion and a corresponding scheduler that schedules the
I/O operations while hiding their latency. We pro-
vide a theoretical analysis of our scheduling algorithm
that shows our algorithm provides better execution time
guarantees than prior work. We also implemented the
algorithm in a practically efficient prototype library that
runs on top of the Cilk-F runtime, a runtime system that
supports futures within the context of the Cilk Plus lan-
guage, and performed experiments that demonstrate the
efficiency of our implementation.

1 Introduction

With the prevalence of multicore processors, task par-
allelism has become increasingly popular. With task
parallelism, the programmer expresses the logical par-
allelism of the computation and lets an underlying run-
time system handle the necessary load balancing and
synchronizations. Modern parallel platforms that im-
plement task parallelism include but are not limited
to OpenMP [35], Intel TBB [25], various dialects of
Cilk [26, 30, 31, 18] and Habanero [10, 15], X10 [17],
and the Java Fork/Join framework [29].

Even though task parallelism simplifies the job of
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programming multicore machines, modern parallel ap-
plications such as desktop software or web services are
not well supported by existing task-parallel platforms.
Research on task-parallel platforms has traditionally
focused on supporting applications from the domain
of high-performance and scientific computing, which
has very different execution characteristics from that of
modern parallel software. In particular, a modern paral-
lel application tends to incur frequent interactions with
the external world, done in the form of input/output
(I/O), such as obtaining user input through key strokes
or mouse clicks, waiting for a data packet to arrive on
a network connection, or writing output to a display
terminal or network.

Existing task-parallel platforms typically imple-
ment work stealing to schedule parallel computations.
In the absence of I/O operations, work stealing pro-
vides provable bounds on execution time [12, 13, 8, 9],
good space usage [13], good cache locality [5, 4], and al-
lows for an efficient implementation [21]. I/O operations
are typically done via low-level system libraries (e.g.,
the GNU C library) or through system calls provided
by the operating systems (OS). While one can directly
invoke functions provided by these libraries within a
task-parallel program, doing so has performance impli-
cations. In particular, the classic work-stealing sched-
uler does not understand the use of I/O operations nor
does it account for it in the scheduling algorithm. When
a worker thread — surrogate of a processing core man-
aged by the scheduler — encounters an I/O operation,
it can block for an extended period of time, leaving
one of the physical cores underutilized while the worker
waits for the I/O operation to complete. Thus, when
a task-parallel computation includes I/O operations, a
work-stealing scheduler can no longer provide the same
provable guarantees.

Alternatively, one can utilize low-level system sup-
port to perform asynchronous (non-blocking) I/O op-
erations. However, handling the asynchronous I/O com-
pletion can be complex — it involves utilizing mecha-
nisms such as signal handling, event-driven style pro-
gramming, or explicit polling, all of which require re-
structuring the program and can severely complicate
the program control flow.

In this work, we study the problem of how to best
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support interactions with the external world in the form
of I/O operations in a task-parallel platform. Specif-
ically, we design a work-stealing scheduler that hides
the I/O latency — when a worker encounters blocking
I/O, it simply suspends the current execution context
and works elsewhere in the computation. When the
I/O operation completes, some worker (not necessarily
the worker that suspended it) picks up the suspended
context and resumes it. To communicate to the under-
lying scheduler the use of latency-incurring I/O oper-
ations, the proposed task-parallel platform wraps the
I/O operations with the future abstraction. As a re-
sult, both blocking and nonblocking I/O operations can
be seamlessly integrated into the task-parallel program-
ming model, and their uses are composable with other
high-level parallel constructs supported by the platform.
Finally, we show that the scheduler provides provably
good performance bounds and empirically demonstrate
the efficiency of our prototype implementation.

As far as we know, only a couple prior works
study the problem of supporting I/O operations in task-
parallel code. On the system side, Zakian et al. [44]
extend Intel Cilk Plus [24] to provide support for a
low-level library that allows a worker to suspend the
current execution context upon encountering a blocking
I/O operation and find something else to do. In this
work, however, the proposed mechanism does not allow
for provable bounds for both time and space usage due
to the way workers handle active work items and blocked
execution contexts.

On the scheduling algorithm front, only one prior
result provides a provably efficient scheduling bound
for task-parallel programs with I/O operations. Muller
and Acar [34] present a cost model for reasoning about
latency incurring operations (such as I/O) in task-
parallel programs. In their work, given a computation
with work T1 — the total computation time on one
core — and span1 T∞— the execution time of the
computation on infinitely many cores — the scheduler
executes the computation in expected time O(T1/P +
T∞U(1 + lgU)), where the U is the maximum number
of latency incurring operations that are logically in
parallel. Their bound is latency-hiding in that the
latencies of I/O operations only appear in the span
term and not the work term. If no latency-incurring
operations are used, their bound is asymptotically equal
to the standard work stealing bound of O(T1/P + T∞).

In this work, we improve the latency-hiding
bound by extending a scheduling algorithm based on
ProWS [36], a recently developed work-stealing sched-

1The term span is sometimes called “critical-path length” or
“computation depth” in the literature.

uler that efficiently supports futures. We implement
I/O operations seamlessly within task-parallel code us-
ing futures while getting nearly asymptotically optimal
completion time. In particular, we were able to prove
that our latency-hiding scheduler provides an execu-
tion time bound of O(T1/P + T∞ lgP ) in expectation;
this bound is independent of the number of I/O oper-
ations in the system. Compared to the standard work-
stealing bound, it just has an additional term of lg P
on the span term. This implies that while the standard
work-stealing scheduler provides linear speedup when
T1/T∞ = Ω(P ), our scheduler provides linear speedup
when T1/T∞ = Ω(P lgP ). ProWS has the same bound,
but its original analysis does not directly apply here due
to the use of latency-incurring I/O operations. We ex-
tend ProWS’s analysis and performance bounds to allow
for latency-incurring I/O operations using futures.

The high-level intuition on why we provide a better
bound compared to prior work [34] is as follows. The
work-stealing algorithm by Muller and Acar is parsi-
monious — a worker never steals unless it runs out
of work to do. In contrast, our work-stealing algorithm
based on ProWS is proactive — whenever a worker en-
counters a blocking I/O operation, it suspends the exe-
cution context and finds something else to do by steal-
ing. This behavior may seem counter-intuitive since it
potentially increases the number of steal attempts. It
turns out, however, by carefully managing deques one
can sometimes amortize the steal cost against the work
term, thereby obtaining a better bound.

More importantly, the use of proactive work stealing
also provides a better bound on the number of devia-
tions [37], defined as execution points at which the par-
allel execution of a program differs from its sequential
execution. As articulated by prior literature [4, 37], the
number of deviations provides a good metric for evalu-
ating practical performance because it is highly corre-
lated to scheduling overheads and cache misses during
parallel executions. For fork-join parallelism, one can
relate the number of deviations to the number of steal
attempts [4]. This relationship does not hold with parsi-
monious work-stealing, however, if the program uses un-
structured blocking operations like futures [37], making
it difficult to bound the number of deviations. The use
of proactive work stealing (as in our algorithm and as in
ProWS) allows one to again bound deviations using the
number of steals, thereby allowing for a better bound on
deviations. With proactive work stealing, ProWS and
our algorithm by extension, guarantee that the expected
number of deviations is O((P lgP+mk)T∞) where mk is
the total number of futures that are logically in parallel.

Our prototype system, Cilk-L, extends Cilk-F [36],
an extension of Intel Cilk Plus [24] that supports futures
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and implements ProWS. Cilk-L defines a special type
of future, called an IO future , which utilizes the
parallelism abstraction provided by futures to schedule
I/O operations in a latency-hiding manner that is
composable with the rest of the parallel constructs
supported (i.e., spawn, sync, fut-create, and get).
When a worker invokes an I/O operation using an IO
future, a handle is returned, and the I/O operation can
be done either synchronously by calling get on the
handle immediately, or asynchronously , calling get

at a later time when the result is needed in order for
the control to proceed.

We empirically evaluated Cilk-L with microbench-
marks that interleave compute-intensive kernels with
I/O operations. The empirical results indicate that
Cilk-L is effective at latency hiding. When we compare
the execution times of Cilk-L with the “idealized” execu-
tion times (where I/O operations do not incur latency),
we find that Cilk-L incurs little overhead, indicating
that the I/O latencies are mostly hidden and occur in
the background. In order to support I/O futures, Cilk-L
necessarily needs to incorporate additional system sup-
port for scheduling I/O operations asynchronously. We
also provide a detailed breakdown of overhead.

Summary of contributions

• We have developed Cilk-L, a task-parallel platform
that incorporates support for scheduling I/O opera-
tions in a latency-hiding way. By utilizing the ab-
straction of futures, one can perform asynchronous
I/O operations in task-parallel code in a way that is
composable with other parallel constructs (Section 3).

• We extend the scheduling algorithm of Cilk-F to
incorporate the latency-hiding cost model, and show
that with I/O latency the algorithm can schedule
the computation in time O(T1/P + T∞ lgP ) on P
cores, independent of the number of I/O operations
active in parallel. This bound is an improvement over
the prior state-of-the-art by Muller and Acar. Since
max{T1/P, T∞} is a lower bound on the execution of
this program on P processors, this bound is nearly
asymptotically optimal except for the lg P overhead
on the span. Moreover, our algorithm provides
bounds on stack space and deviations, whereas the
algorithm by Muller and Acar does not (Section 4).

• We empirically evaluated Cilk-L using microbench-
marks. The empirical results indicate that Cilk-L
hides I/O latency effectively and incurs little schedul-
ing overhead in doing so (Section 5).

2 Preliminaries

This section provides the necessary background. We
first discuss the syntax and semantics for the parallel

control constructs supported by Cilk-F [36] and how
one can represent a computation expressed with these
keywords abstractly as a DAG. We then discuss how
a parsimonious work stealing runtime schedules the
computation assuming no latency-incurring operations
are present.

Parallel control constructs: Cilk-F, and by ex-
tension Cilk-L, support a small set of parallel control
constructs: spawn, sync, fut-create, and get.2 These
keywords operate at the level of function calls. When
a function F spawns off a function G by prefixing the
call with the spawn keyword, G may execute in paral-
lel with the continuation of F (the statements after the
spawn). The keyword sync is the counterpart of spawn;
it indicates that control cannot pass beyond the sync

statement until all previously spawned children have re-
turned. In Cilk-F, there is an implicit sync at the end
of every function, ensuring that all children spawned via
spawn return before this function returns.

The keyword fut-create works in a similar fashion
as spawn. When a function F spawns off a function G
by prefixing the call with the fut-create call, G may
execute in parallel with the continuation of F . Unlike
spawn, however, the execution of a sync has no effect on
fut-create. The control can pass beyond sync even
if a function previously spawned off via fut-create

has not returned. Moreover, a fut-create returns a
handle h immediately, which is an object that the
execution of G is associated with. The handle can
later be used to ensure termination of G and retrieve its
result. In particular, when G finishes execution, the last
instruction is implicitly a put call which puts the result
of G into h and marks the future as ready. By invoking
get on the handle, the control cannot pass beyond the
get until the execution of G terminates and the future
is marked as ready.

Execution DAG: Parallel computations gener-
ated by programs written with these primitives can be
represented using a directed acyclic graph (DAG). Ver-
tices of the DAG represent a unit time computation
task3 and edges represent dependences between nodes.
We make the standard assumptions: there is a single
root node and the out-degree is at most 2.

We classify nodes into a few different categories.
Regular nodes are simply computation nodes. A spawn
node executes a spawn and has two children — the
left child is the first node of the spawned function
and the right child is the continuation node. A join

2The keyword cilk_for also exists to indicate parallel loops,
but it is just a syntactic sugar that translates to binary spawning

of iteration space using spawn and sync.
3This is an assumption of convenience — longer operations can

be represented as a chain of unit time operations.
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node represents the continuation after a sync call and
has multiple parents — the sync node itself and the
last nodes of all the functions being synced. The
fut-create keyword behaves similarly to spawn and
generates a future create node that has two children:
the left child is the first node of the future task and
right is the continuation. A future join node is the
node immediately after the invocation of get and has
two parents — the get node (called the local parent)
and the future put node — the last node of the
corresponding future task that puts the result of the
future in the future handle.

We say that a node is ready or enabled if all
its predecessors have executed. The work of the
computation DAG is the total number of nodes in the
DAG and is represented by T1 — it is the total time
to execute the DAG on 1 processor. The span of the
weighted DAG is the longest path in the DAG and is
represented by T∞.

Parsimonious work stealing: Parsimonious
work-stealing works by doing local work first. In
computations with no latency-incurring operations,
each worker maintains a single double ended-queue
(or deque) of ready nodes. For the most part, a worker
operates on its deque. In particular, when a worker
finishes executing a node, it may enable 0, 1 or 2 of
its children. If it enables one child, the worker next
executes the child. If it enables two children, it puts
the right child on the deque and executes the left child.
If it enables no children, it pops the bottom node from
its deque and executes that node. Only when a worker
runs out of work (its deque becomes empty), does it
turn into a thief . At this time, it randomly chooses
a victim to steal work from. Upon a steal, the thief
steals the ready node from the top of the victim’s
deque and executes it. If the victim deque has no ready
nodes, then the worker tries another random steal.

3 The System Implementation

This section describes Cilk-L, a prototype system that
extends Cilk-F [36] to incorporate support for perform-
ing I/O operations with latency hiding. The I/O sup-
port in Cilk-L consists of two main components: the IO
futures library and runtime support for doing asyn-
chronous I/O operations. We first discuss the program-
mer API for using IO futures, its implementation, and
then the runtime support. Since I/O operations are typ-
ically supported via low-level system libraries and by
the underlying operating system, currently Cilk-L only
targets Linux platforms and utilizes various I/O related
facilities from Linux.

3.1 The IO Futures Library

We use an example to illustrate the programming API
provided by the library. Figure 1 shows the distributed
map-and-reduce example. In this code, the function
distMapReduce takes in five parameters: f , g, id, lo,
and hi. The computation works as follows. The code
obtains a set of input values from n = hi − lo different
network connections. The call to openConnection in
line 6 abstracts away the sequence of steps to open
a network connection, which returns a file descriptor
representing the network connection once it is open.
For each value x in the set, the code applies the map
function f(x) and then combines the resulting values
from f(x) using a binary reduction operation, g.

The IO futures library exposes one data type to
the programmer, the handle for IO futures io_future,
and two I/O functions, cilk_read and cilk_write, for
reading from and writing to a file indicated by the file
descriptor (i.e., the first argument, fd). In Linux, all
I/O devices are presented as files, including network
connections, which allows for a uniform interface for
performing I/O operations [14, Chp. 10]. That means
cilk_read and cilk_write work with any I/O device
that can be represented as a file. The cilk_read

and cilk_write functions are analogous to the Unix
read and write system calls, except that they are
asynchronous , i.e., non-blocking. Both functions
return an io_future handle representing the ongoing
I/O operation, but the function itself does not block —
the I/O is initiated and linked to the io_future handle,
and the handle is immediately returned.

1 Function distMapReduce(f , g, id, lo, hi)
2 n← hi− lo;

3 if n = 0 then return id; //return identity.

4 else if n = 1 then
5 char buf [NBYTES] ; //buffer for input data.

6 fd← openConnection(lo) //open network

connection.

7 io_future fut← cilk_read(fd, buf , NBYTES)

8 get(fut);
9 return f(buf);

10 end
11 else

12 mid← (lo + hi)/2;
13 r1← spawn distMapReduce(f , g, id, lo, mid);
14 r2← distMapReduce(f , g, id, mid, hi);
15 sync;
16 return g(r1, r2)

17 end

18 end

Figure 1: Distributed map and reduce example.

A call to cilk_read or cilk_write first creates an
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io_future to represent the I/O request. The corre-
sponding data required to carry out the I/O request
(such as the file descriptor fd and the buffer buf to
store input) is bundled up with the io_future. This
data bundle is inserted into a communication queue
to be processed by the runtime. The io_future is then
returned to the caller. If the user needs the result from
the future or wants to ensure that it has completed, they
can perform a get on this io_future handle. The con-
tinuation of get (the future join node) cannot execute
until the I/O operation has completed.

3.2 Runtime Support to Hide I/O Latencies

At runtime startup, normally a work-stealing runtime
creates P persistent threads as P workers, one per
processing core. In Cilk-L, 2P persistent threads are
created — for every worker a corresponding I/O thread
is created, and this persistent thread is pinned to
the same core as its worker.4 The I/O thread is
only used to process I/O requests (via the IO futures
library) generated by the worker’s execution of user
code. Thus, in the library implementation described
above, the communication queue is implemented as
a lock-free single-producer/single-consumer queue and
used as a means for the worker thread to communicate
I/O requests to its I/O thread.

When an I/O thread runs, it dequeues items from
the communication queue and attempts to perform an
I/O operation as soon as it is received. If an I/O
operation cannot be completed immediately (e.g., the
next packet has not yet arrived on the network socket),
then the I/O thread puts the request aside and processes
it later when the I/O device becomes ready (e.g., it has
more input to be consumed).

In order to describe how the actual mechanism
works, we need to briefly discuss how I/O operations
work on Linux. As mentioned earlier, any I/O device
on Linux (e.g., network sockets, mice, and keyboards)
can be represented as a file descriptor. Obtaining input
(read) from a file descriptor is effectively copying data
from the corresponding device into memory (e.g., the
buf in the example). If the device is not ready to be read
(e.g., the next packet has not arrived on the network
channel yet), the system call read will block. One could
mark the file descriptor with the correct flag such that
the system call would simply return instead of blocking,
with a return value indicating input not ready. However,
in this case, we must periodically make the system call
again to know when the device becomes ready.

One possibility is to periodically wake up the I/O

4If the hardware has hyperthreading enabled, Cilk-L pins them
to separate hardware threads (hyperthreads) associated with the
same physical core.

thread and have it poll the device via non-blocking
read. This scheme is not ideal, as a system call can
be expensive. Moreover, if the device is not ready,
checking would simply cause the I/O thread to take up
processor cycles that could be better used by its worker
working on the actual computation. Thus, we would
like to avoid the periodic wake up and the unnecessary
system calls. Ideally, we would like the I/O thread to
simply sleep and not use any processor cycles unless
one of the following conditions happen: (a) one of the
I/O devices with pending operations becomes ready;
or (b) its worker inserts a new I/O request into the
communication queue.

To achieve part (a), we use the Linux epoll [1]
facility which allows the I/O thread to monitor a set of
file descriptors (an epoll set). Adding a file descriptor
to be monitored takes O(lg n) time, where n is the
number of file descriptors currently in the epoll set.
The I/O thread can go to sleep by calling epoll_wait,
and it will be woken up when one of the I/O devices
corresponding to one of the monitored file descriptors
becomes ready. Determining which file descriptors have
become ready takes O(1) time — adding a file descriptor
to the epoll set registers a callback with the file’s
underlying system driver; this callback will move the file
into a ready list and wake the monitoring thread when
I/O on that device becomes possible. Once the I/O
thread is woken up, it can query epoll to obtain the list
of ready file descriptors, which allows the I/O thread to
determine which pending I/O operations can continue.
In summary, each I/O thread maintains its own epoll

set. When an I/O thread receives an I/O request but
the corresponding file descriptor is not ready, the I/O
thread adds the file descriptor to its epoll set to be
monitored. Once an I/O thread has processed all I/O
requests in the communication queue, it goes to sleep
via epoll_wait. Doing so achieves part (a).

One last piece of the puzzle is how to avoid having
the I/O thread check the communication queue period-
ically and yet still allow submitted I/O requests to be
processed quickly whenever they are received. We solve
this by using an event wait/notify mechanism called
eventfd provided by Linux [2]. The eventfd mecha-
nism is used to create a file descriptor that can be read
by an I/O thread and written to by its worker. This file
descriptor can be opened with semaphore-like seman-
tics, in which writes will increment a backing counter
and reads will decrement the same counter. When used
with epoll, a write to an eventfd file descriptor will
cause the I/O thread to wake up whenever the backing
counter is incremented from 0 to 1. By writing to an
eventfd file descriptor associated with a communica-
tion queue whenever an I/O operation is enqueued, and
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by symmetrically reading from the same file descriptor
whenever an operation is dequeued, epoll can also be
used to monitor the state of the communication queue.
Thus, we use this combination of eventfd and epoll

to achieve part (b).
By combining these mechanisms, we achieve the

effect that an I/O thread takes up processor cycles
only when either there is a new I/O request from the
worker or when one of the previously dequeued (and
unprocessed) I/O operations can be performed. When
an I/O thread completes an I/O operation, it performs
a put on the corresponding io_future handle. From its
worker’s perspective, a call to get can cause the current
execution to suspend, but the worker will just go find
something else to do. Cilk-L schedules the execution
of the IO futures in the same manner Cilk-F schedules
ordinary futures, which we briefly review in Section 4.

4 Algorithm and Analysis

This section describes how to represent a program with
I/O operations abstractly, the high level scheduling
algorithm, and the runtime analysis. For scheduling, we
will use ProWS, the proactive work-stealing algorithm
described by Singer et al. [36]. The algorithm by Singer
et al. schedules programs with futures in a time and
space efficient manner, and we will briefly describe the
algorithm here for completeness. However, the analysis
in [36] handles futures but not I/O operations. Here
we will show how that analysis can be extended to
appropriately account for I/O latencies.

4.1 Execution DAG

We extend the model from Section 2 and add weighted
edges in a manner similar to [34]. In our model, I/O
operations are performed within future tasks. The invo-
cation of an I/O function (cilk_read and cilk_write)
creates an io_future, sets up the necessary data for
the I/O request, inserts the request into the commu-
nication queue, and returns (discussed in Section 3).
We will call the last node of this future task before it
returns the I/O setup node . However, unlike in non-
I/O future tasks, this future itself is not ready. The
future is ready when the I/O thread executes put upon
the I/O completion — we will call the put node of an
I/O future an I/O put node. We will have a heavy
edge between the I/O setup node and the corresponding
I/O put node — the weight on this edge represents the
amount of time elapsed between when the I/O function
returns and when the I/O completes (including the time
that the I/O thread takes to handle the I/O request).
All other edges are light with weight of one.

We can define work and span. The work is un-
changed, i.e., the total number of nodes in the DAG.

Therefore, it is unaffected by the latencies on the edges.
The span of the weighted DAG is the longest weighted
path in the DAG and is the only parameter affected by
the latencies.

Again a node is ready if all its predecessors have
executed, except for the I/O put node. An I/O put node
is suspended once its predecessor (the corresponding
I/O setup node) finishes executing. If ` is the weight of
the incoming edge to the put node, it remains suspended
for ` time steps. After these ` time steps, it is considered
to have finished executing since the I/O thread will write
the result into the future handle after these ` time steps.
This definition of suspension of a put node is simply for
the ease of analysis and has no impact on the scheduler
since the put node is executed by an I/O thread and
not by the worker thread.

4.2 Proactive Work Stealing

We use ProWS, the proactive work stealing scheduler
by Singer et al. [36], unchanged. The main difference
between proactive and parsimonious work stealing is
the handling of a blocked future get. In parsimonious
work stealing, when a worker’s current node executes a
get and the future is not ready, the subsequent future
join node is not enabled. Therefore, the current node
enables 0 children and (as described in Section 2) the
worker pops the next node from the bottom of the deque
and continues working. The algorithm by Muller and
Acar [34] is a variant of this — when a worker blocks
on an I/O operation, it pops the next node off its deque
and keeps working on it.

ProWS behaves differently on executing a get

where the future handle h is not ready.5 instead of pop-
ping the next node from its active deque d, the worker
work steals. In particular, the worker (1) marks the cur-
rent deque suspended ; (2) it randomly picks another
worker to donate this suspended deque to; and (3) allo-
cates a new active deque d′ for itself and randomly work
steals. When the handle h becomes ready (the future
finishes), then the corresponding put node marks the
deque d resumable and pushes the future join node to
the bottom of d.

Therefore in ProWS, each worker p has potentially
many deques. One of these is active — this is the
deque the worker is currently working on. In addition,
it many have many suspended and resumable deques
— collectively, the suspended and resumable deques are
called the worker p’s inactive deques. In addition, any

5There are other circumstances where the execution of the
node enables no other nodes, such as when a worker returns
from a spawned or future function — in all these circumstances

proactive work stealing behaves as the parsimonious one and pops
the bottom node from its deque.
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suspended deques that have no ready nodes are un-
stealable ; all other deques are stealable . The reason
for this distinction is that unstealable deques have no
ready nodes, so stealing from them is a waste of time.
Note that any resumable deques with no ready nodes
are simply de-allocated. However, a suspended deque
d with no ready nodes cannot be deallocated for the
following reason. Deque d is suspended since some get

executed, but the corresponding future has not com-
pleted. When this future completes, the corresponding
put node will enable the future join node and push it
at the bottom of d and mark it resumable. Therefore,
if we deallocate it, we would not have a targeted place
to push this future join node.

A steal attempt also works slightly differently com-
pared to traditional work stealing. When work stealing,
a thief first picks a random victim and then picks a ran-
dom stealable deque to steal from among the deques
that the victim has. If the target deque is suspended,
then the worker simply steals the top node from the
deque. If the deque has no more ready nodes, then this
deque is marked unstealable. There are additional de-
tails on how to handle resumable deques in order to get
the correct bounds on running time and deviations —
however, these details do not change in our analysis and
we refer the reader to [36] for those details.

The important bits from the perspective of our
understanding are the following: (1) Every worker has
potentially many deques: one deque is active, and there
are potentially many inactive deques (either suspended
or resumable and some of the suspended deques may be
unstealable); and (2) due to random throws when the
deques are suspended, all workers have approximately
equal number of deques. We will use these two facts in
the analysis.

4.3 Analysis

The analysis of ProWS with I/O operations is, to a
large extent, an extension of the analysis by Singer
et al. [36] (henceforth, we will call them SXL) with
proper accounting for latency edges. Muller and Acar
do account for latency on edges, but do not use futures
for I/O operations, use parsimonious work stealing, and
do not rebalance deques between workers. Therefore,
the running time on P processors is O(T1/P +T∞U(1+
lgU)), where U is the maximum suspension width
— the number of I/O operations that can be pending
at the same time in the DAG. There is no bound on
the number of deviations. The way they handle the
potential function in order to hide the latency is a little
different from our method.

Here, we are using ProWS and want to get a
running time bound of O(T1/P + T∞ lgP )) and the

deviation bound of O((P lgP + mk)T∞) where mk is
the total number of futures logically in parallel. For the
special case where all futures are I/O futures, mk = U .6

The analysis of SXL doesn’t work out of the box,
however, since it does not consider the latency on heavy
edges. Therefore, here, we will rely on the lemmas
proved in that paper, but modify the potential function
in order to handle the heavy edges appropriately.

In general, in work stealing, a worker is always
either working or stealing. The main point of the
analysis is to bound the total number of steal attempts,
say by X. Since the total work is T1, the total running
time is (T1 + X)/P . In addition, bounding the total
number of successful steals also gives us a bound on the
total number of deviations (for proactive work stealing,
though not for parsimonious work stealing).

ProWS potential function and analysis:
SXL’s analysis uses a potential function similar to the
one used by Arora et al. [8] (henceforth called ABP)
to bound the number of steal attempts. The potential
function there is based on the enabling tree — we say
that u enables v if u is the last parent of v to execute
and, in this case, we add an edge between u and v in
the enabling tree. It turns out that, for technical rea-
sons, we cannot use the enabling tree for proactive work
stealing. Instead, we will use the DAG itself to decide
the potential of the node.

The potential function is based on the depth of
nodes in the DAG. The depth of the node u with one
parent v is d(u) = d(v) + 1. The depth of a node with
multiple parents is similar, except that we add 1 to the
depth of the deepest parent. The weight of node u is
w(u) = T∞ − d(u).

We say that a node u is the assigned node for
deque d if d is the active deque for some worker p and
p is currently executing u. The potential of a node u
is defined as follows: Φ(u) = 32w(u)−1 if u is assigned
and Φ(u) = 32w(u) if u is ready. For technical reasons,
we will say that the assigned node for deque d is at the
bottom of deque d even though it cannot be stolen. The
total potential of a deque d is the sum of the potential of
all nodes on d including the assigned node if d is active.
The total potential of the computation is the sum of the
potentials of all the ready and assigned nodes on all the
deques.

Some of the key results from ABP carry over with
these changes in definitions.

Lemma 4.1. The initial potential is 32T∞−1 and the

6SXL provide separate deviation bounds for structured and
general futures and they both carry over. If all our I/O operations

are done using structured futures, then the bound is better than
this — here we only provide the general bound.
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final potential is 0. In addition, the potential never
increases.

Lemma 4.2. Top Heavy Deques The top most node
in the deque has a constant fraction of the total potential
of the deque.

The intuition is that the top of the deque contains
the node that was pushed on the deque farthest in the
past and, therefore, it is the shallowest node in the
DAG. Since the potential decreases geometrically with
the depth, this node contains most of the potential of
the deque.

The following lemma is a straightforward general-
ization of Lemmas 7 and 8 in ABP [8]. The high-level
intuition is that since the top node of each deque con-
tains a constant fraction of its potential, if we steal and
execute the top node from each deque with reasonable
probability, the overall potential is likely to reduce by a
constant fraction.

Lemma 4.3. Let Φi denote the potential on deques at
time t and say that the probability of each deque being a
victim of a steal attempt is at least 1/X. Then after X
steal attempts, the potential of deques is at most Φ(t)/4
with probability at least 1/4.

In ABP, since there are only P deques, one for each
worker, this lemma shows that P random steal attempts
reduce the potential by a constant factor with constant
probability. However, in ProWS, there are potentially
many deques. Therefore, we may need many more steal
attempts to reduce the potential. In addition, it is
difficult to design a way to steal from all deques with
equal probability if the deques are distributed across
many workers.

In ProWS, however, recall that when a deque is
suspended, the worker picks a random worker and
donates the deque to that worker. Therefore, even if
one worker suspends many deques, it does not hold
on to them — the deques are approximately evenly
distributed among all workers. When a worker steals,
it picks a random victim worker and then a random
stealable deque from the victim. Therefore, each deque
has an approximately equal chance of being a victim of
a steal attempt. In particular, SXL show the following:

Lemma 4.4. Given P workers and D stealable deques
in the system, each worker has at most D/P + O(lgP )
stealable deques with probability at least 1− o(1).

Another insight SXL uses is that a steal attempt
from a stealable deque is generally successful if it is not
an active deque. Therefore, if there are many (more
than 3P ) stealable deques in the system (and only P of

them are active), then most processors have at least one
stealable deque and most steal attempts are successful.
These periods are called work-bounded phases and
SXL argue that the total number of steal attempts
in work-bounded phases can be bounded by O(T1) in
expectation.

Therefore, we only need worry about decreasing the
potential when there are not too many stealable deques
— these times are called steal-bounded phases . SXL
use Lemma 4.4 to argue that, during a steal-bounded
phase, each stealable deque has at least c/P lgP chance
of being the victim of a steal attempt (for some constant
c) because no worker has more than O(lgP ) stealable
deques. Therefore, using Lemma 4.3, the potential of
deques reduces by a constant factor after P lgP steal
attempts (since unstealable deques are empty and have
no potential). Given that the initial potential is 32T∞−1,
the expected number of steal attempts during steal
bounded phases is O(P lgPT∞). Therefore, considering
both work- and steal-bounded phases, the total number
of steal attempts is O(T1+P lgPT∞). In addition, they
also separately bound the expected number of successful
steals in work bounded phases by O(mkT∞). This
allows them to bound the deviations by O((P lgP +
mk)T∞).

Changes to potential and analysis to handle
weighted edges: We want to show the same bounds
when we use futures for I/O operations. The bounds on
steals in work-bounded phases carry over unchanged.
In particular, the expected number of steal attempts
in work-bounded phases is still T1 and the expected
number of successful steals is still mkT∞. However,
for steal bounded phases, where we rely on potential to
bound the number of steal attempts, the analysis that
bounds the steals does not apply directly for somewhat
technical reasons.

Consider the following scenario. Some worker p
with active deque d executes a get on an I/O future
handle f and blocks since the future is not ready. It
suspends this deque and steals. At some point, the
I/O thread completes the I/O operation corresponding
to f , executes the put, enables the future join node
(say u) for f , and puts it at the bottom of d. Note
that this deque’s potential now suddenly increases, and
our analysis strongly depends on the potential never
increasing.

This is not a problem for SXL for the following
reason: If a particular future join node u is not ready,
then some deque must have some ancestor of u on
its deque (either as a ready or an assigned node).
Therefore, u does not appear on d from nowhere — some
ancestor executes, this ancestor’s potential is larger than
u’s potential and therefore, even though u becomes
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ready, the overall potential of the computation does
not increase. In our case, no ancestor of u is ready
or assigned anywhere in the system since the reason
u is not ready is due to the latency on an I/O edge.
This is problematic since u being enabled increases the
potential of the system.

To fix this problem, we have to give potential to put
nodes for I/O futures (even though they are executed
by I/O threads) and handle them in a special way. In
particular, recall that the only heavy edges in our DAG
are between I/O setup nodes and the corresponding
I/O put nodes. For I/O put nodes, we will define two
notions of depth: the initial depth id(u) of an I/O put
node with enabling parent v (which is always an I/O
setup node) is id(u) = d(v) + 1. The depth d(u) starts
out as id(u) and increases on every time step while
the I/O operation is pending and this I/O put node is
suspended. If the weight of the heavy edge (the latency
of the corresponding I/O operation) between v and u is
`, then u is suspended for ` steps. Therefore, u’s final
depth is fd(u) = d(v) + `. When the I/O operation
completes, this put node completes.

Now consider the child node j of the I/O put node
u — j is always a future join node. When deciding the
depth of j, we always use u’s final depth fd(u). That
is, if x is j’s other parent (the node generated by the
get operation), then d(j) = max{fd(u), d(x)}+ 1.

The potential of a pending put node is defined just
like other ready nodes. At any time, if the depth of
the put node is d(u), its weight is w(u) = T∞ − d(u)
and potential is 32w(u). However, since the depth of the
node changes over time, so does its weight and potential.
The total potential of the computation is the sum of the
potentials of all the ready and assigned nodes on all the
deques as well as the potentials of all the put nodes
(which are not on any deque).

We now get back the following lemma:

Lemma 4.5. The potential never increases.

Proof. We only need consider the case when a future
join node v is enabled by an I/O put node u. By
definition, u has lower depth and thus higher potential
than v. v is only enabled once u finishes. Therefore, the
potential of the system does not increase.

However, adding these put nodes creates a problem.
These put nodes are not on any deque; therefore, steal
attempts do not reduce the potential associated with
these nodes directly. We must also now argue that
the potential of I/O put nodes decreases appropriately
during steal-bounded phases. This is the reason why we
designed the potential of these put nodes in the funny
way where their potential starts out high and reduces
on every time step.

Lemma 4.6. During steal-bounded phases, if the total
potential at time i is Φi (including potential of assigned,
ready and suspended put nodes), then after cP lgP steal
attempts, for some constant c, the potential is at most
Φ(t)/4 with probability at least 1/4.

Proof. SXL already argued that the potential of deques
reduces appropriately. Therefore, we only need to
consider the suspended I/O put nodes. Note that if the
latency of a weighted edge is `, then the corresponding
put node u remains suspended for ` time steps. Its
potential starts at 32(T∞−id(u)) and decreases by a factor
of 1/9 on every time step. When the I/O operation
completes and the future is ready, the potential of u
is 32(T∞−fd(u)). Since it takes at least c lgP ≥ 1 time
steps to do cP lgP steal attempts, the potential of this
put node u reduces by a large fraction during this time.
This is true for all put nodes, giving the desired result.

This lemma allows us to bound the expected num-
ber of steal attempts (and therefore, expected num-
ber of successful steals) during steal bounded phases by
P lgPT∞ — the same result as SXL. Since the expected
number of steal attempts and successful steals for work-
bounded phases remains unchanged, we get the same
time and deviation bounds as SXL.

Theorem 4.1. The expected number of steal attempts
is O(T1 + P lgPT∞). Therefore, the expected running
time is O(T1 + P lgPT∞). In addition, the expected
number of deviations is O((P lgP + mk)T∞).

5 Empirical Evaluation

This section empirically evaluates our prototype
implementation of Cilk-L using a microbenchmark
map-reduce that closely resembles the example shown
in Section 3 Figure 1. We would like to answer the fol-
lowing three questions in the evaluation: (1) how much
benefit can one obtain from latency hiding; (2) how well
can Cilk-L hide latency compared to an idealized sys-
tem that hides the latency entirely and incurs zero over-
head for hiding latency; and (3) how much does each
mechanism used in Cilk-L to hide latency contribute to
its overhead. How we measure each is explained in its re-
spective subsections. Overall, the empirical results indi-
cate that one can obtain substantial performance benefit
from latency hiding. Cilk-L hides latency well when the
application has ample parallelism. As the theory pre-
dicts, when the application has insufficient parallelism
and the weighted span term (i.e., T∞ lgP ) dominates,
the performance of Cilk-L can lag behind the idealized
version. Finally, the empirical results show that Cilk-L
is lightweight, incurring minimal system overhead com-
pared to the idealized version.
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Experimental setup: We ran our experiments on
a machine with two Intel Xeon Gold 6148 processors,
each with 20 2.40-GHz cores, with a total of 40 cores.
Each core has a 32KB L1 data cache, 32KB L1 instruc-
tion cache, and a 1MB L2 cache. Hyperthreading is
enabled. Dynamic frequency scaling is disabled. Both
sockets have a 27.5MB shared L3 cache, and 768GB of
main memory. Cilk-L and map-reduce are compiled
with LLVM/Clang 3.4.1 with -O3 -flto running on
Linux kernel version 4.15. Each data point is the aver-
age of 10 runs. All data points have standard deviation
less than 5% except for a handful of data points, which
we note later as we explain the data.

Benchmark: We use a microbenchmark with very
similar code structure to the map and reduce example
(map-reduce) described in Section 3 (Figure 1), which
is also used by Muller and Acar [34]. To allow for com-
parison with the system by Muller and Acar [34], we
have used the same computation kernels and parame-
ters used in their experiments, unless noted otherwise.
Like Muller and Acar, we emulate 5000 remote server
connections with simulated delays. At line 6 in Fig-
ure 1, rather than opening a true network connection,
we used a timed file descriptor which becomes ready for
I/O when the timer expires.7 We replace the parameter
f with a parallel version of the naive recursive imple-
mentation of Fibonacci with a serial base case of 25, and
used it to compute the 30th Fibonacci number (fib). In
place of calling function g (line 16), we return the sum
of r1 and r2 modulo 1000000000.

5.1 The Benefit of Latency Hiding

To evaluate the benefit of latency-hiding, we compare
Cilk-L with the baseline system Cilk-F, a ProWS sched-
uler that provide the same provably efficient time and
deviation bounds that supports futures but does not
hide I/O latency (i.e., a worker encountering an I/O
function blocks until the I/O operation completes).8

Specifically, we compare to two different versions of
Cilk-F: one uses the same number of workers (Cilk-F)
and one uses twice as many workers so as to oversub-
scribe the system (Cilk-F (O)) and let the underlying
OS perform scheduling to hide latency. The Cilk-L ver-
sion of map-reduce uses IO futures to hide latencies
whereas the two versions of Cilk-F execute the base-
line code that simply uses a blocking read.9 We have
also compared Cilk-L with the state-of-the-art latency-

7This functionality is provided by the Linux timerfd [3].
8Cilk-F extends Cilk Plus to support futures. Singer et

al. [36] empirically evaluated Cilk-F and showed that it performs

comparably to Cilk Plus.
9The code executed by Cilk-F and Cilk-F (O) contains only

spawn and sync since read is used in place of IO futures.

hiding work stealing scheduler proposed by Muller and
Acar [34], denoted as ParWS (parsimonious work steal-
ing). However, note that the comparison to ParWS is
not strictly an apples-to-apples comparison, as their im-
plementation is done in a variant of Parallel ML that im-
plements parsimonious work stealing [39] whereas our
implementation is C/C++-based. Nonetheless, since
their implementation is the only other existing task-
parallel scheduler that supports latency-hiding I/O op-
erations with provably efficient execution time bound,
we thus include the comparison for completeness.

We ran map-reduce with simulated I/O latencies of
1, 50, and 100 milliseconds. Figure 2 shows the speedup
of Cilk-L compared to the one-worker execution time of
running the baseline version of map-reduce on Cilk-
F. Unlike what was observed by Muller and Acar [34],
we do see some advantage to using Cilk-L to hide I/O
latency at 1 millisecond. When the latency is short,
however, one could benefit from simply using the over-
subscription strategy (i.e., Cilk-F(O)). The Cilk-F(O)
outperforms Cilk-L and even the Ideal at 1-millisecond
latency because it utilizes all available hyperthreads to
do work. Its performance slows once the computation
incurs cross-socket communication (i.e., P > 20). We
did separate experiments and found that Cilk-L breaks
even / outperforms the oversubscription strategy at a
latency of 7 milliseconds or higher for all P tested using
map-reduce.

By the time latency hits 50 milliseconds, there is a
more pronounced advantage to using the I/O functions
provided by Cilk-L. With P = 1, we already see a
speedup greater than 9×, which increases to over 313×
at P = 40. On the other hand, oversubscribing Cilk-F
achieves about 2P× speedup. This pattern continues
as we increase the latency to 100 milliseconds, reaching
speedups greater than 530×.

We also ran map-reduce using the Parallel ML im-
plementation of Muller and Acar [34] and plotted the
speedup relative to their Parallel ML baseline applica-
tion. Although this is not quite an apples-to-apples
comparison, as there is inherent overhead when using
functional languages, the significant increase in speedup
for Cilk-L compared to ParWS for P ≤ 20 is still worth
noting. For P > 20 it is an especially unfair compari-
son, as even the Parallel ML baseline application used
by Muller and Acar [34] achieves poor speedup once pro-
cessor socket communication overhead makes memory
management very costly for Parallel ML. For ParWS,
the standard deviations for P ≥ 35 (for all latency con-
figurations) are quite high, ranging from 16 − 30%.
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(a) Latency = 1 millisecond (b) Latency = 50 milliseconds (c) Latency = 100 milliseconds

Figure 2: Speedups, compared to the one-core running time (T1) of the respective baselines, of map-reduce

running in ParWS, Cilk-F, Cilk-F (O), and Cilk-L with latencies of 1, 50, and 100 milliseconds. Ideal is the
Cilk-F implementation that makes calls to read that returns immediately. For Ideal, Cilk-F, Cilk-F (O), and
Cilk-L, we computed the speedup against the T1 in Cilk-F. We computed the speedup for the ParWS against its
corresponding baseline implemented in Parallel ML that is not shown. The x-axis shows the core counts (P ) and
the y-axis shows the speedup. Cilk-F (O) oversubscribes the system by using 2P workers instead of P , for P
number of cores (i.e. every core has two workers pinned, one per hyperthread context). Cilk-L pins one worker
thread and one I/O thread per core, each on its own hyperthread context.

latency T1 T5 T10 T15 T20 T25 T30 T35 T40

Ideal 32.87 (1.00×) 6.58 (1.00×) 3.29 (1.00×) 2.20 (1.00×) 1.65 (1.00×) 1.32 (1.00×) 1.11 (1.00×) 0.95 (1.00×) 0.83 (1.00×)

n=30 1 ms 32.42 (0.99×) 6.51 (0.99×) 3.28 (1.00×) 2.20 (1.00×) 1.67 (1.01×) 1.34 (1.01×) 1.13 (1.02×) 0.98 (1.03×) 0.87 (1.04×)

b=25 50 ms 32.54 (0.99×) 6.63 (1.01×) 3.39 (1.03×) 2.33 (1.06×) 1.80 (1.09×) 1.48 (1.12×) 1.27 (1.15×) 1.13 (1.19×) 1.04 (1.24×)

100 ms 32.68 (0.99×) 6.71 (1.02×) 3.52 (1.07×) 2.45 (1.12×) 1.91 (1.16×) 1.60 (1.21×) 1.37 (1.24×) 1.21 (1.28×) 1.08 (1.30×)

Ideal 369.19 (1.00×) 73.85 (1.00×) 36.93 (1.00×) 24.62 (1.00×) 18.47 (1.00×) 14.79 (1.00×) 12.32 (1.00×) 10.57 (1.00×) 9.25 (1.00×)

n=35 1 ms 362.73 (0.98×) 72.59 (0.98×) 36.32 (0.98×) 24.22 (0.98×) 18.19 (0.98×) 14.56 (0.98×) 12.15 (0.99×) 10.42 (0.99×) 9.13 (0.99×)

b=15 50 ms 362.89 (0.98×) 72.69 (0.98×) 36.42 (0.99×) 24.31 (0.99×) 18.27 (0.99×) 14.67 (0.99×) 12.24 (0.99×) 10.51 (0.99×) 9.22 (1.00×)

100 ms 362.99 (0.98×) 72.76 (0.99×) 36.49 (0.99×) 24.42 (0.99×) 18.38 (1.00×) 14.74 (1.00×) 12.34 (1.00×) 10.61 (1.00×) 9.31 (1.01×)

Figure 3: The execution times, in seconds, of map-reduce with different Fibonacci parameters running on Ideal
and Cilk-L with different latencies (ms = milliseconds). Two sets of Fibonacci parameters are tested; n shows
the input size and b shows the serial base case size. The values in parentheses are overheads relative to the
corresponding TP time of Ideal, which runs map-reduce on Cilk-F with zero latency and incurs no system overhead
for latency hiding (same as the Ideal label shown in Figure 2).

5.2 Cilk-L’s Proximity to Ideal

Now we evaluate how close Cilk-L is to an “idealized”
version at hiding I/O latencies. We obtain the Ideal
measurement by running Cilk-F with a timed file de-
scriptor with zero delay (i.e., in place of cilk_read the
benchmark invokes a read that returns immediately).10

Moreover, since it is run with Cilk-F, it does not incur
any overhead of setting up IO futures, epoll, or waking
up and context switching to I/O threads. That is, the
idealized version incurs neither latency nor the overhead
for hiding latency.

Figure 2 also includes the idealized version (labeled
as “Ideal”) in the plots. As we can see, when the latency
is large Cilk-L lags behind Ideal when running fib of
30 with a serial base case of 25. We suspect that this
is because the benchmark running on Cilk-L does not

10Technically we used a 1 nanosecond latency, which is the

smallest latency one could specify with the timed file descriptor
on Linux, but it effectively causes the read to become ready
immediately.

have sufficient parallelism and becomes span-dominated
(i.e., the span term T∞ lgP dominates the work term
T1/P in the time bound). By measuring fib of 30
running on one worker, the total amount of work is
about 7 milliseconds, which is small compared to the 100
millisecond latency. Note that the computation running
on Cilk-F variants do not have the same issue, as the
I/O latency is incurred both on the work and span terms
(or, in the Ideal case, there is zero latency). Thus, the
parallelism profile is not the same when running on Cilk-
L versus on Cilk-F variants. This shows up as Cilk-L
lagging behind Ideal, because Ideal still achieves near-
linear scalability whereas Cilk-L does not (scalability
computed as TP over T1 running on the same platform).

To verify this, we also run both Ideal and Cilk-
L with additional parameters, i.e., computing the Fi-
bonacci number with different input size (n) and serial
base case (b). Figure 3 shows the raw execution times of
the Ideal and Cilk-L with different latencies. The first
four rows are the times used to plot Figure 2. With
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input of 30 and base case of 25, the overhead (TP of
Cilk-L divided by TP of Ideal) starts out small and in-
creases as P gets larger. With input of 35 and base case
of 15, the computation has sufficient parallelism to hide
the latency fully, and we see the discrepancy between
Ideal and Cilk-L disappears. We also note that, for
data points where Cilk-L runs fib of 30 with P ≥ 35,
we see higher standard deviations, between 6 − 10%.

5.3 Cilk-L’s Overhead in Latency-Hiding

The use of IO futures in Cilk-L has some inherent over-
head: (1) setting up and tearing down IO futures, (2)
invoking the epoll mechanism, which has its inherent
system call overheads, and (3) waking up and context
switching into I/O threads. These overheads likely con-
tribute to both the less desirable performance compared
to oversubscribing Cilk-F when the latency is small and
the additional overhead comparing to the ideal version.
To figure out how much overhead is contributed by each
source, we measure different versions of Cilk-L and com-
pare that to Ideal (Cilk-F running map-reduce where
read returns immediately). The +future version is sim-
ilar to Ideal except that we added back the overhead
of using IO futures (fut-create, placing the result into
future handles, and get). Building on the +future ver-
sion, the +epoll version then adds back the overhead
of using epoll. Finally, the +IO Thread version adds
back the overhead of using a separate thread to han-
dle the I/O operations.11 Note that since the latency is
effectively zero, the I/O thread will be woken up only
once per request when the request is inserted into the
communication queue. Figure 4 shows the comparison.
The empirical results show that the overhead from the
use of futures is negligible. The overhead from epoll

and the I/O thread are comparable, but both are small.

6 Related Work

Interesting use of futures: Since its pro-
posal [22], the use of futures has been incorporated into
various task parallel platforms [16, 28, 22, 17, 38, 20,
42, 15, 32]. Futures are typically used as a high-level
synchronization construct to allow parallel tasks to co-
ordinate with one another in a way that is more flexible
than pure fork-join parallelism.

Researchers have proposed interesting uses of fu-
tures. Blelloch and Reid-Miller [11] used futures to
generate non-linear pipelines. Using futures to pipeline
the split and merge of binary trees, they developed a
parallel algorithm of tree merge with better span than

11Cilk-F is effectively a stripped-down version of Cilk-L that
removes all mechanisms to support latency-hiding. We obtain
each version by incrementally adding back each mechanism that
incurs the overhead.

a fork-join parallel marge algorithm. Surendran and
Sarkar [40] proposed using futures to automatically par-
allelize pure function calls in programs and developed
the corresponding compiler analyses. Kogan and Her-
lihy [27] proposed linearizable futures that allow a
concurrent data structure to be shared among threads
via the use of futures and formalized the correctness
guarantees for such uses. Milman et al. [33] proposed
an algorithm for a batched lock-free queue using fu-
tures and proved correctness guarantees for the batched
queue. By exploiting the semantic requirements of a
queue, they can optimize the batched operations.

Prior work has used futures as an abstraction for
I/O operations [19] in server software. However, their
work does not address how the use of futures are
scheduled nor what kind of performance bounds the
scheduler can provide.

Supporting blocking synchronization primi-
tives: Researchers have also proposed runtime sched-
ulers for scheduling programs with blocking synchro-
nizations. For instance, Agrawal et al. [7] proposed a
work-stealing runtime system for helper locks — where
when a worker tries to acquire a lock that is not avail-
able, it tries to help complete the critical section that is
currently holding the lock. They proved that this sched-
uler was efficient if large critical sections had sufficient
internal parallelism.

X10 [17] and Habanero [15] variants support block-
ing synchronization primitives such as conditional
blocks, clocks, and phasers. Most of these implementa-
tions do not have provably efficient performance bounds.
Initially, in X10 [17] and Habanero Java, synchroniza-
tion primitives (e.g., conditional atomic blocks or barri-
ers) may cause the worker to simply block, and the run-
time compensates by creating a new worker thread to re-
place the blocked worker. Later, Tardieu et al. [41] pro-
posed better compiler and runtime support for X10 for
suspending a task blocked on synchronizations. How-
ever, the suspended tasks are stored in a centralized
queue. For Habanero Java, [23] describes an alterna-
tive strategy: when suspended tasks become resumable,
they are pushed onto the deque of the worker that exe-
cuted the operation to unblock the tasks.

As mentioned in Section 1, Zakian et al. [44] extend
Intel Cilk Plus [24] to provide support for a low-level
library which allows a worker to suspend the current
execution context upon encountering a blocking I/O op-
eration and find something else to do. Due to how the
deques with the suspended execution context are han-
dled, however, their system does not provide a provably
efficient execution time bound. In their system, the
multiple suspended contexts (deques) are stored with
the worker which suspended them, causing the deques
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overhead T1 T5 T10 T15 T20 T25 T30 T35 T40

Ideal 32.87 (1.00×) 6.58 (1.00×) 3.29 (1.00×) 2.20 (1.00×) 1.65 (1.00×) 1.32 (1.00×) 1.11 (1.00×) 0.95 (1.00×) 0.83 (1.00×)

+future 31.58 (0.96×) 6.32 (0.96×) 3.16 (0.96×) 2.11 (0.96×) 1.58 (0.96×) 1.27 (0.96×) 1.06 (0.96×) 0.91 (0.96×) 0.80 (0.96×)

+epoll 32.88 (1.00×) 6.58 (1.00×) 3.29 (1.00×) 2.20 (1.00×) 1.65 (1.00×) 1.32 (1.00×) 1.10 (1.00×) 0.95 (1.00×) 0.83 (1.00×)

+IO Thread 32.38 (0.99×) 6.50 (0.99×) 3.27 (0.99×) 2.20 (1.00×) 1.66 (1.01×) 1.35 (1.02×) 1.13 (1.02×) 0.97 (1.03×) 0.86 (1.03×)

Figure 4: The execution times, in seconds, of map-reduce with various configurations of Cilk-L with no I/O
latency (i.e. reads do not block). The overheads are relative to the corresponding TP time of Ideal, which uses
Cilk-F without latency-hiding.

among workers to potentially become extremely imbal-
anced. Moreover, a thief stealing into a victim always
checks the active deque first before stealing into deques
with suspended execution contexts. In addition, once
a suspended execution context becomes ready to be re-
sumed, the deque holding the context may become un-
stealable, but the worker who owns the deque is busy
working on something else and cannot resume it in a
timely manner. Thus, a high potential work item may
have little or no chance to be stolen into despite many
steal attempts.

Work-stealing schedulers with multiple de-
ques per worker: Various work-stealing runtime sys-
tems have used multiple deques per worker for different
reasons. The runtime system for helper locks [7] (dis-
cussed above) used multiple deques per worker. When
a worker is blocked on a lock, it is only allowed to work
on the critical section that is holding the lock (assuming
this critical section has internal parallelism) and does
so by allocating another deque specifically for this crit-
ical section. Therefore, in a program with nested locks
with nesting depth d, workers could have as many as
d deques each. However, the scheduler is designed so
that each worker can steal from at most one deque of
each of the other workers. In a similar vein, Agrawal et
al. [6] proposed the Batcher runtime system to handle
parallel programs that access shared data structures. In
this case, workers can be working on either the program
work or the data structure work, and these types of work
are kept on different deques. But again, at any given
time a worker steals randomly among P deques.

Porridge [43] is a processor-oblivious record-and-
replay system for dynamic multithreaded programs us-
ing work stealing. Porridge allows multithreaded pro-
gram with locks to be executed on some number of pro-
cessors while recording all the happens-before relation-
ship between critical sections. The execution can later
be replayed on a different number of processors, but in
a way that guarantees the same happens-before rela-
tionships. During record, the vanilla work-stealing al-
gorithm that just blocks on an unavailable lock can be
used. However, during replay, a vanilla work-stealing
scheduler can lead to deadlocks. Therefore, if a critical
section C tries to acquire a lock and can not acquire it

since the critical section with a happens-before edge to
C has not finished, the processor must find something
else to do. The runtime system there also uses proactive
work-stealing and achieves similar bounds.

7 Conclusion

In order to support modern desktop and server software,
I/O operations should be supported as a fundamental
component of task parallel platforms. In this paper, we
show how one may incorporate I/O operations into a
task parallel platform seamlessly with efficient schedul-
ing to hide I/O latencies. In particular, our platform
Cilk-L provides a programming API for performing I/O
operations that works harmoniously with existing paral-
lel control constructs. In addition, the underlying run-
time system efficiently schedules both the computation
and the I/O operations to provide nearly optimal ex-
ecution time guarantees and a bound on the number
of deviations. We achieve this by using the proactive
work stealing scheduler recently developed for schedul-
ing computations with futures. Empirical evaluation of
our prototype system shows that I/O can be supported
efficiently with effective latency hiding.
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